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Diagnosis of Mild Cognitive Impairment With
Ordinal Pattern Kernel
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Abstract— Mild cognitive impairment (MCI) belongs to
the prodromal stage of Alzheimer’s disease (AD). Accurate
diagnosis of MCI is very important for possibly deferring
AD progression. Graph kernels, which measure the sim-
ilarity between paired brain connectivity networks, have
been widely used to diagnose brain diseases (e.g., MCI)
and yielded promising classificationperformance. However,
most of the existing graph kernels are based on unweighted
graphs, and neglect the valuable weighted information of the
edges in brain connectivity networks where edge weights
convey the strengths of fiber connection or temporal cor-
relation between paired brain regions. Accordingly, in this
paper, we propose a new graph kernel called ordinal pat-
tern kernel for measuring brain connectivity network sim-
ilarity and apply it to brain disease classification tasks.
Different from the existing graph kernels which measure
the topological similarity of the unweighted graphs, our
proposed ordinal pattern kernel can not only calculate the
similarity of paired brain connectivity networks, but also
capture the ordinal pattern relationship of edge weights in
brain connectivity networks. To appraise the effectiveness
of our proposed method, we perform extensive experiments
in functional magnetic resonance imaging data of brain
disease from Alzheimer’s Disease Neuroimaging Initiative
database. The experimental results show that our proposed
ordinal pattern kernel outperforms the state-of-the-art graph
kernels in the classification tasks of MCI.

Index Terms— Graph kernel, ordinal pattern, brain net-
work, classification, mild cognitive impairment.

I. INTRODUCTION

ALZHEIMER’S disease (AD) is a neurodegenerative brain
disease and brings substantial irreversible neuron damage

to human brain. AD usually develops very slowly at the begin-
ning and becomes worse as time goes on, which eventually
leads to death. The clinical manifestations of AD include
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Fig. 1. Connectivity matrices of NC and early mild cognitive impairment
patients. Compared with NC, the connectivities among brain regions in
EMCI are changed. EMCI: early mild cognitive impairment. NC: normal
controls.

memory loss, cognitive dysfunction, and behavioral disorders.
At the prodromal stage of AD, which is called mild cognitive
impairment (MCI), patients usually have less neuron damage
compared to AD. MCI patients whose clinical condition is
between normal aging and AD still have some brain cog-
nitive functions. Nevertheless, they have high probability of
progressing to AD. In every year, there are about 10%∼15%
MCI patients who will convert to AD, while there are about
1%∼2% normal controls (NC) who will progress to AD [1].
The related studies showed that disease-modifying therapies
for MCI patients could delay the onset of clinical dementia
expression to a certain extent and help patients preserve some
brain cognitive functions [2]. Hence, it is very important
for possibly deferring AD progression to accurately diagnose
MCI.

A great deal of evidence from neuroscience studies indicate
that brain cognitive function is closely related to neural activ-
ities between pairwise brain regions [3]. With the emergence
of new medical imaging techniques, some non-invasive tools
involving functional magnetic resonance imaging (fMRI) [4],
electroencephalogram (EEG) [5] and functional near-infrared
spectroscopy (fNIRS) [6], [7] can effectively capture the inter-
action patterns among brain neural activities. These interaction
patterns in the brain can be described as a brain connectivity
network with graph theory, which helps us better investigate
the neuropathological mechanism of brain disease by analyz-
ing the connectivities in brain functional network [8]. For
example, the research based on brain functional connectivity
network constructed from fMRI indicated that AD patients
were significantly different from normal aging controls in the
brain functional connections related to the hippocampus [9].
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Brain connectivity network abstractly characterizes the
structural or functional interaction of human brain, where
brain regions correspond to nodes and functional or anatomical
associations between nodes are considered as edges [10].
Brain connectivity network is widely applied to the researches
of brain disease classification, including AD [11], attention
deficit hyperactivity disorder [12], schizophrenia [13], and
major depressive disorder [14]. In these studies, various
network descriptors, e.g., degree, clustering coefficient [15],
[16], are first extracted from connectivity networks as feature
vectors. Then, these feature vectors are applied to machine
learning classifiers to classify brain diseases. However, the
brain connectivity network is a spatial topological structure.
Representing the brain connectivity network as feature vectors
will ignore the topological structure information of the brain
connectivity network. Meantime, it is a challenge for the meth-
ods based on feature vector [17] to measure the topological
similarity between a pair of networks (or graphs). To process
this problem, in the last decade, many methods are proposed
to measure the similarity among networks.

In various approaches, kernel method, especially graph ker-
nel, offers a powerful framework for measuring the similarity
of pairwise networks. Graph kernel is a kind of kernel function
defined on graphs (i.e., networks), which has been widely
applied to brain connectivity network analysis. However, most
of the existing graph kernels are based on unweighted graph
with edge presenting or not, and thus ignore the valuable
weighted information of edges in brain connectivity network
where edge weights convey the strengths of fiber connection
or temporal correlation between paired brain regions. After
transforming brain images into brain connectivity networks,
each node in the network corresponds to a specific brain
region. Brain regions are connected by different weighted
edges (i.e., edges with weighted values). According to the
different weighted values in network edges, there are spe-
cific ordinal pattern relationships among these edge weights.
Previous graph kernels rarely take into account the weighted
information of edge and the ordinal pattern relationship of
edge weights, due to the inconvenience of measuring brain
connectivity network similarity. A large amount of researches
have indicated that the neurodegenerative brain diseases (e.g.,
MCI and AD) are associated with the connectivities among the
specific brain regions [18]. The neurodegenerative disorders
change the connectivities between the pairwise brain regions
in brain networks of patients, which result in the different con-
nectivity matrices compared to NC. We plot the connectivity
matrices of NC and early MCI patients, as shown in Fig. 1.
From Fig. 1, we can find that NC are different from early
MCI patients in the connectivity matrices of brain networks.
Meantime, the changed connectivities between brain regions
also affect the ordinal pattern relationships of edge weights
which result in the changed ordinal patterns. We plot the
ordinal pattern whose start node is left amygdala (AMYG.L) in
NC and early MCI patients, as shown in Fig. 2. Fig. 2 shows
that the ordinal pattern from AMYG.L in NC is different from
that in early MCI patients. Therefore, edge weight information
and ordinal pattern relationships are very significant for brain
connectivity network analysis.

Fig. 2. Ordinal patterns of NC and early mild cognitive impairment
patients. The ordinal pattern in NC is: AMYG.L→ HIP.R→ AMYG.R→
MTG.R → SFGdor.R. The ordinal pattern in EMCI is: AMYG.L →
AMYG.R → PUT.L → PAL.L → HIP.R. Compared to NC, the ordinal
pattern from AMYG.L in EMCI is changed. EMCI: early mild cognitive
impairment. NC: normal controls. The full names of brain regions are
shown in Table IV.

In the previous work [19], ordinal pattern as a new descrip-
tor for brain connectivity network was proposed, which could
take advantage of the weight information of edges. In this
work, the frequent ordinal patterns in brain connectivity
networks were firstly identified with the frequent ordinal
pattern mining algorithm. Then, the discriminative ordinal
pattern selection was performed and feature representations
were extracted based on the selected ordinal patterns. At last,
these feature representations were applied to support vec-
tor machine (SVM) for automated brain disease diagnosis.
Adopting the ordinal pattern method in [19] for classification
task needs to perform frequent ordinal pattern mining and
discriminative ordinal pattern selection for each brain region.
Obviously, this method will cost much time. Meantime, this
method regards the ordinal patterns as feature vectors and
ignores the topological structure information of ordinal pattern
in brain connectivity network, as shown in Fig. 2.

To address these problems, we develop a new graph kernel
called ordinal pattern kernel for measuring the similarities
between brain connectivity networks. In this work, accord-
ing to the definition of ordinal pattern, we firstly introduce
our proposed general ordinal pattern (GOP) kernel and pro-
vide the theoretical foundations and proofs for it. Then,
we find that computing the general ordinal pattern kernel
is non-deterministic polynomial hard (NP-hard), which is
computationally intractable. To address this problem, we fur-
ther propose a depth-first-based ordinal pattern (DOP) kernel,
which measures the similarity of paired brain connectivity
networks by matching the depth-first-based ordinal pattern
of each node. Different from the existing graph kernels,
the proposed ordinal pattern kernel can not only calculate
the similarity of brain connectivity networks via comparing
node ordinal patterns, but also capture the ordinal pattern
relationship of edge weights. We evaluate our ordinal pattern
kernel in the network data of brain diseases from Alzheimer’s
Disease Neuroimaging Initiative (ADNI)1 database.

There are three main contributions in this paper: (1) The
proposed ordinal pattern kernel can make full use of the
weighted information of edge in brain network and out-
performs the existing state-of-the-art graph kernels in the

1http://adni.loni.usc.edu/
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Fig. 3. Illustration of the ordinal patterns and ordinal pattern kernel defined on weighted networks. The left are weighted network G1 and G2. The
middle are ordinal pattern sets from network G1 and G2. The right are ordinal pattern kernel defined on weighted networks. OPi and OPj are two
ordinal patterns from G1 and G2. OPs1 and OPs2 are two ordinal pattern sets decomposed from weighted network G1 and G2. DOPvi and DOPvj
are two depth-first-based ordinal patterns with starting node vi and vj which are respectively from G1 and G2. GOP kernel is general ordinal pattern
kernel. DOP kernel is depth-first-based ordinal pattern kernel.

TABLE I
CHARACTERISTIC OF THE SUBJECT (MMSE±STANDARD DEVIATION).

MMSE: MINI-MENTAL STATE EXAMINATION. EMCI: EARLY MILD

COGNITIVE IMPAIRMENT. LMCI: LATE MILD COGNITIVE IMPAIRMENT.
NC: NORMAL CONTROLS

classification accuracy; (2) The proposed ordinal pattern kernel
has strong robustness. When brain networks have missing data
(i.e., network edges have null values), our method can still
acquire the best classification accuracy. (3) The proposed ordi-
nal pattern kernel can be used to investigate the discriminative
ordinal patterns of patients with brain disease, compared with
NC.

The rest of the paper is organized as follows. In Section II,
we introduce materials and describe the proposed method.
In Section III, we present the experimental settings and results.
In Section IV, we present the discussion for the experimental
results. At last, we summarize this paper in Section V.

II. MATERIALS AND METHOD

A. Subjects

The network data of brain diseases used in the exper-
iments are constructed from the resting state fMRI data
which are from ADNI. There are 56 early mild cognitive
impairment (EMCI) patients, 43 late mild cognitive impair-
ment (LMCI) patients, and 50 NC in our research. All subjects
were scanned on 3.0 Tesla Philips scanners. The image reso-
lution in X and Y dimensions is from 2.29 mm to 3.31 mm.
The slice thickness is 3.31 mm. TE is 30 ms and TR is from
2.2 s to 3.1 s. We report the subjects’ demographic and clinical
information in Table I.

B. Image Processing and Brain Network Construction

All the acquired fMRI datasets were preprocessed with
data processing assistant for resting-state fMRI (rs-fMRI) [20],

which is an integrated toolbox consisting of statistical para-
metric mapping2 and rs-fMRI analysis toolkit.3 The DICOM
data of all subjects were transformed into the file format
of neuroimaging informatics technology initiative. The full
name of “DICOM” is digital imaging and communications in
medicine. In order to enable all subjects adapt to the machine
noise, the first ten time points of all data were removed for
signal equilibrium. Slice-timing correction was executed by
utilizing the middle slice as a reference frame. Head motion
correction was performed for correcting the brain of each
subject in the same position of every image. Functional brain
images of all subjects were spatially mapped into a normal-
ized Montreal Neurological Institute space by utilizing an
echo-planar imaging template. The fMRI data of all subjects
were smoothed via utilizing a Gaussian kernel which has a
full-width at half-maximum of 6 mm. The frequency ranges
of band pass filtering and global drift removal were selected
from 0.01Hz to 0.1Hz.

We utilize Automated Anatomical Labeling (AAL)
atlas [21] to divide brain structures of all subjects into 90 brain
regions. In our research, we regard each brain region as a
region-of-interest (ROI). Within the specific ROI, we average
the signals of blood oxygen level-dependent based on all
voxels, and then calculate mean rs-fMRI time series for
each ROI. In order to acquire the functional connectivity
between a pair of ROIs, we compute the linear correlation (i.e.,
Pearson correlation) of mean time series between paired ROIs.
Accordingly, we obtain a 90 × 90 brain functional network of
each subject. In this network, each node corresponds to one
ROI and the edge weight corresponds to functional connection
strength.

C. Ordinal Pattern and Isomorphism

In the previous work [19], ordinal pattern was regarded
as a new descriptor for brain connectivity networks, which
provided ordinal edge sequences for each node. This work
regarded the ordinal patterns as feature vectors and ignored the
topological structure information of ordinal pattern in brain

2http://www.fil.ion.ucl.ac.uk/spm
3http://www.restfmri.net
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connectivity network. To address this problem, we extend
ordinal pattern into graph structure and redefine it with graph
theory. In this section, we mainly introduce the concepts of
ordinal pattern in graph structure and ordinal pattern isomor-
phism.

1) Ordinal Pattern: A weighted network or graph G con-
sists of a set of nodes V, edges E and weight vectors W,
G = (V, E, W). W is the weight vector for those edges with
the i-th element W (ei ) representing the connection strength
of the edge ei , ei ∈ E. The ordinal pattern (OP) defined
in graph G is a set including ordinal nodes and ordinal
edges OP = (

Vop, Eop
)
. Eop is an ordinal edge set, Eop =

{e1, e2, · · · , ei , e j , · · · , eM } ⊆ E, all 0 < i < j ≤ M,
W (ei ) > W

(
e j

)
, ei and e j are called ordinal edges. Vop is

a vertex set where vertexes are connected by ordinal edges
included in Eop. The illustration of ordinal patterns can be
seen in Fig. 3. O Pi and O Pj are two ordinal patterns.

2) Isomorphism: A graph or network can be decomposed
into multiple ordinal patterns. Here, we call the set consisting
of all ordinal patterns ordinal pattern set (OPs). OPs1 and
OPs2 are two ordinal pattern sets of the graph G1 and
G2, OP1 =

(
Vop1, Eop1

)
and OP2 =

(
Vop2, Eop2

)
are two

ordinal patterns, OP1∈OPs1, OP2∈OPs2. An ordinal pattern
isomorphism between two ordinal patterns OP1 and OP2 is
a bijective mapping ϕ : Vop1 → Vop2 , i.e., ∀vop1, v

�
op1
∈

Vop1 : (vop1, v
�
op1

) ∈ Eop1 ⇔ ϕ(vop1), ϕ(v �op1
) ∈ Vop2 ,

(ϕ(vop1), ϕ(v �op1
)) ∈ Eop2 . O P1 and O P2 are isomorphic,

written as OP1 ∼= OP2. V �1 ⊆ Vop1 and V �2 ⊆ Vop2 are subsets
of ordinal pattern vertices. An ordinal pattern isomorphism
τ of OP1[V �1] and OP2[V �2] is called sub-ordinal pattern
isomorphism (SOPI) of OP1 and OP2.

D. GOP Kernel

We suppose that a graph G has N ordinal pat-
terns, the ordinal pattern set of graph G is OPs =
{OP1, · · · , OPi , · · · , OPN }, OPi is the i-th ordinal pattern,
1 ≤ i ≤ N. Two graphs G1 and G2 have their own ordinal
pattern set which is OPs1 and OPs2, respectively. ϕi j is the
isomorphism mapping from ordinal pattern OPi to ordinal
pattern OP j , OPi∈OPs1, OP j∈OPs2. Let �

(
OPi , OP j

)
refer

to the set which includes all sub-ordinal pattern isomorphisms
of OPi and OP j . ϒ: �

(
OPi , OP j

)→ R
+ is a weight function

calculating the node number in sub-ordinal patterns, when
sub-ordinal patterns are isomorphic. The sub-ordinal pattern
isomorphism kernel is defined as:

KS O P I (O Pi , O Pj ) =
∑

τ∈�(O Pi ,O Pj )

ϒ(τ) (1)

where KS O P I is a kernel function, and measure the similarity
between ordinal pattern O Pi and O Pj by using isomorphic
sub-ordinal patterns in O Pi and O Pj . If these sub-ordinal
patterns are isomorphic, ϒ return the node number of sub-
ordinal patterns, otherwise, ϒ return zero.

Theorem 1: Sub-ordinal pattern isomorphism kernel KS O P I

in Eq.(1) is a positive semidefinite (p.s.d) kernel.
Proof : The sub-ordinal pattern can be regarded as a kind

of the sub-structure of the graph. The kernel measuring the

similarity between graph sub-structures is p.s.d [22]. Hence,
the KS O P I is p.s.d .

The sub-ordinal pattern isomorphism kernel measures the
similarity between two ordinal patterns by counting the num-
ber of sub-ordinal pattern isomorphisms. Then, we get the
GOP kernel between two graphs G1 and G2, defined as:

KG O P (G1, G2) =
∑

O Pi∈OPs1

∑
OP j∈OPs2

iso-count(OPi,OP j )

(2)

where OPs1 and OPs2 are the ordinal pattern sets of G1 and
G2, iso-count(·) is a function calculating isomorphism:
iso-count(OPi,OP j )

=
{

λo(O Pi ), i f OPi , OP j isomor phic

KS O P I (O Pi , O Pj ), otherwi se.
(3)

where λo is a weight function: O Ps → R
+, which counts the

node number when two ordinal patterns are isomorphic.
Theorem 2: The general ordinal pattern kernel KG O P in

Eq.(2) is p.s.d.
Proof : The iso-count(OPi,OP j ) is a p.s.d function,

KG O P is the summation of iso-count(OPi,OP j ), and hence
KG O P is p.s.d .

Although we have known how to calculate general ordinal
pattern kernel, there still exists one problem that the kernel
based on ordinal pattern isomorphism is NP-hard.

Theorem 3: Computing the kernel KG O P is NP-hard.
Proof : KG O P is a kernel based on ordinal pattern isomor-

phism which is a kind of subgraph isomorphism belonging to
NP-hard problem [22]. Hence, KG O P is NP-hard.

E. DOP Kernel

There are two problems in the above computation of GOP
kernel. One problem is that computing the kernel KG O P

is NP-hard, which is computationally intractable. The other
problem is that an ordinal pattern (e.g., O P1) may be the
sub-ordinal pattern of another ordinal pattern (e.g., O P2) in
one graph. For example, in Fig. 3, given two ordinal patterns
O P1 and O P2, O P1 and O P2 are from weighted network G1.
OP1 =

(
Vop1, Eop1

)
, Vop1 = {a,b,c}, Eop1 = {eab, ebc}, OP2 =(

Vop2, Eop2

)
, Vop2 = {a,b,c,d}, Eop2 = {eab, ebc, ecd}, O P1 is

the sub-structure of O P2. This problem brings redundant
calculations for general ordinal pattern kernel. In order to
address these two problems, we further propose a modified
ordinal pattern kernel based on depth-first search called depth-
first-based ordinal pattern kernel. We adopt the depth-first
search algorithm to seek the deepest ordinal pattern for each
node in the graph and then design the relevant ordinal pattern
kernel on them. The ordinal pattern constructed by depth-first
search is called depth-first-based ordinal pattern. The DOP is
a linear structure, and hence the isomorphism problem in DOP
can be regarded as a matching problem.

1) DOP: Here, we introduce the establishment process of
depth-first-based ordinal pattern in detail. A weighted network
or graph G consists of a set of nodes V , edges E and weight
vectors W , G = (V, E, W). ∀u ∈ V, the neighborhood vertex
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Algorithm 1 Depth-First-Based Ordinal Pattern of Node v0:
DOP(W, v0)
Input: Weight matrix W of graph G, start node v0
Output: The deepest ordinal pattern of node v0: DO P(v0)

1: vi si tnode[1] = v0 % Mark the node v0 as the visited node
2: nextnode = V (max{W(v0)}) % V() is node function,

return the node ‘nextnode’
3: vi si tnode[2] = nextnode
4: v = v0; i = 2
5: while !isempty (δ(nextnode)) do
6: j=1
7: Wdes = descend(W(nextnode)) % Sort the set

W(nextnode) in descending order
8: Len-Wdes=Length (Wdes) % Calculate the number of

edges in Wdes

9: while j ≤Len-Wdes do
10: if Wdes [ j ] < W (nextnode, v) then
11: v = nextnode
12: nextnode = V (Wdes [ j ])
13: i = i + 1
14: vi si tnode[i ] = nextnode
15: break
16: else
17: j=j+1

18: return vi si tnodev0 % Depth-first-based ordinal pattern
sequence of node v0

set of a vertex u: δ (u) = {v : (u, v) ∈ E, v ∈ V }, the edge
weight set between vertex u and its neighborhood vertices:
W (u) = {W (u, v) : v ∈ δ (u) , (u, v) ∈ E}. In graph G,
we choose a node as the start node v0 and use the depth-first
search algorithm to seek the depth-first-based ordinal pattern
of node v0, as shown in Algorithm 1.

2) DOP Kernel: We use Algorithm 1 to calculate the DOP
for each node in the graphs G1 and G2. Subsequently, we will
utilize these ordinal patterns to construct the depth-first-based
ordinal pattern kernel KDO P between the graphs G1 and G2.
In our research, G1 and G2 represent the brain networks of
two subjects. The depth-first-based ordinal pattern kernel is
defined as follows:
K DO P (G1, G2)=

∑
vi∈G1

∑
v j∈G2

match(DO P(vi ), DO P(v j ))

(4)

where DO P(vi ) and DO P(v j ) are the depth-first-based ordi-
nal patterns of node vi and v j , and

match
(
DO P (vi ) , DO P

(
v j

)) = ∑
p⊆DO P(v j )
q⊆DO P(vi )

λ|{p : p ∼= q}|

(5)

where λ is a sequence λ1, λ2, . . . , λN of weights
(λi ∈ R; λi > 0 f or all i ∈ N). Because, DO P(vi ) and
DO P(v j ) are linear, match

(
DO P (vi ) , DO P

(
v j

))
can be

calculated by matching the node numbers between DO P (vi )

Algorithm 2 KDOP(G1, G2)
Input: Brain network G1, G2
Output: The depth-first-based ordinal pattern kernel K DO P

between G1 and G2

1: G1 NodeNum = si ze(G1, 1) % The node number of graph
G1

2: G2 NodeNum = si ze(G2, 1) % The node number of graph
G2

3: K DO P = 0
4: for i=1 to G1 NodeNum do
5: for j=1 to G2 NodeNum do
6: DO P(vi )← DO P(G1, vi )
7: DO P(v j )← DO P(G2, v j )
8: Kmatch = match(DO P(vi ), DO P(v j )) % Kmatch

is a function measuring the similarity between DO P(vi )
and DO P(v j ). match() function is defined in Eq.(5).

9: K DO P = K DO P + Kmatch % K DO P is a function
measuring the similarity between G1 and G2, which is
defined in Eq.(4).

10: return K DO P

and DO P
(
v j

)
, as shown in Fig. 3. The computational process

of DOP kernel is shown in Algorithm 2.
Theorem 4: Depth-first-based ordinal pattern kernel K DO P

in Eq.(4) is p.s.d.
Proof : According to the definitions of the sub-ordinal

pattern isomorphism kernel and the literature [23], we know
that match

(
DO P (vi ) , DO P

(
v j

))
is a p.s.d kernel function

measuring the similarity between DO P(vi ) and DO P(v j ).
This kernel function is calculated by matching the node
numbers between DO P(vi ) and DO P(v j ). Hence, K DO P is
p.s.d.

Computation Complexity: We suppose that each brain net-
work has N nodes, then the complexity for calculating depth-
first-based ordinal pattern kernel between a pair of brain
network is O(N2).

F. Ordinal Pattern Kernel Based Learning

We use the image processing method mentioned in materials
and method to process the resting state fMRI data of all
subjects and construct brain functional connectivity networks
for all subjects. In brain functional connectivity network,
each node represents a brain region, and the weighted edge
calculated by the Pearson correlation coefficient denotes the
functional connection between paired brain regions. Given the
brain connectivity networks of all subjects, we compute our
proposed ordinal pattern kernel on them with Algorithm 2 and
apply the kernel matrix to SVM classifier for brain disease
classification. Suppose that we have N subjects, then the size
of the kernel matrix is N × N .

III. RESULTS

A. Methods for Comparison

We compare the proposed ordinal pattern kernel with the
state-of-the-art graph kernels involving Weisfeiler-Lehman
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TABLE II
CLASSIFICATION RESULTS OF ALL METHODS. DOP IS THE PROPOSED

METHOD. ACC: CLASSIFICATION ACCURACY, AUC: AREA UNDER

RECEIVER OPERATING CHARACTERISTIC CURVE. EMCI: EARLY MILD

COGNITIVE IMPAIRMENT. LMCI: LATE MILD COGNITIVE IMPAIRMENT.
NC: NORMAL CONTROLS

subtree kernel (WL-ST) [24], shortest path kernel (SP) [25],
Weisfeiler-Lehman shortest path kernel (WL-SP) [24], random
walk kernel (RW) [26], pyramid match kernel (PM) [27],
Wasserstein Weisfeiler-Lehman graph kernel (WWL) [28],
GraphHopper kernel (GH) [29], truncated tree based graph
kernels (Tree++) [30], and sub-network kernels (SKL) [31].
WL-ST and WL-SP are two parts of graph Weisfeiler-Lehman
framework which are proposed by Shervashidze et al. [24].
WWL is proposed by Togninalli et al [28]. They utilize the
Wasserstein distance to measure the similarity of pairwise
graphs based on Weisfeiler-Lehman. PM measures the graph
similarity on hierarchical structures which look like pyramid.
SP, GH and Tree++ are based on path kernel. SP computes the
matching shortest path for measuring the similarity of pairwise
graphs. GH counts sub-path similarities for pairwise graphs.
Tree++ uses super path containing truncated breadth-first
search trees rooted at the vertices in a path to measure the
graph similarity. RW counts the number of matching random
walks for measuring the similarity between two graphs. SKL
measures the similarity between paired networks by calculat-
ing the similarity of sub-networks from nodes.

B. Experimental Setting

We perform three kinds of binary classification tasks in
the experiments involving 1) EMCI vs. NC classification, 2)
LMCI vs. NC classification, and 3) EMCI vs. LMCI classifi-
cation. The experiments are performed in weighted functional
networks of all subjects. SVM as the final classifier is exploited
to conduct the classification experiment, and is based on a
SVM tool called LIBSVM library [32]. The tradeoff parameter
C in the SVM is selected from {10−3, 10−2, . . . , 103}. We uti-
lize the default parameters offered by authors in the competing
methods. We implement leave-one-out cross-validation for
all the classifications. We evaluate the performances of all
methods with classification accuracy (ACC) and area under
receiver operating characteristic curve (AUC).

We use kernel two-sample test (KTST) [33], [34] to analyze
the discriminative ordinal pattern, the significant level is 0.05.
The alternative hypothesis is that the ordinal patterns of
NC have differences with those of patients (e.g., EMCI and

LMCI). In KTST, the input information is weighted functional
network. We use BrainNet Viewer toolbox (version: 1.61) [35]
to plot the brain connectivity figures (e.g., Fig.2 and Fig.5) and
brain region figure (e.g., Fig.6). We use MATLAB (version:
2018a) to plot the deep ordinal pattern sequences in Table III.

C. Classification Performance

We compare our ordinal pattern kernel with the state-of-
the-art graph kernels in three classification tasks, including
(1) EMCI vs. NC classification, (2) EMCI vs. LMCI clas-
sification, and (3) LMCI vs. NC classification. The classi-
fication results of all methods are summarized in Table II.
From Table II, we can find that our proposed graph kernel
outperforms the control methods in three classification tasks
of brain diseases. Specifically, our proposed method obtain
the accuracies of 75.47%, 77.42%, and 89.25% for EMCI
vs. NC, EMCI vs. LMCI, and LMCI vs. NC classification,
respectively, while the best accuracies of the control methods
are 71.36%, 74.81%, and 82.56%, respectively. In addition,
the AUC of our proposed method is respectively 0.737, 0.743,
and 0.858 in three classification tasks of brain diseases, which
demonstrates the excellent diagnostic power, meanwhile the
best AUC from the competing methods is respectively 0.706,
0.726, and 0.732. These classification results demonstrates that
our proposed ordinal pattern kernel is good at distinguishing
EMCI and LMCI from NC, and distinguishing EMCI from
LMCI, compared to the state-of-the-art kernels.

D. Robustness Analysis

Information missing [36], [37], which often exists in the
research field of brain fMRI, will bring challenges for brain
network classification. Hence, the robust methods are very
important for the classification task based on brain con-
nectivity network. In order to verify the robustness of our
proposed ordinal pattern kernel in brain connectivity network
with missing information, we randomly throw out the specific
percentage of connectivity edges ( 5%, 15%, 25%, 35%, 45%,
respectively) in the brain network of each subject, i.e., the
specific percentage of network edge values are set as null
values. Then, we measure the similarities among these specific
brain networks with our ordinal pattern kernel. We perform the
classification experiments on these network data with SVM
classifier. The classification results are shown in Fig. 4.

From Fig. 4, we can find that our ordinal pattern kernel can
acquire robust and excellent classification accuracies in these
brain network data with missing information. For example,
in the classification task of missing data (i.e., missing rate =
{5%, 15%, 25%, 35%, 45%} ) between EMCI and NC, the
classification accuracy obtained from our ordinal pattern kernel
is 75.38%, 75.06%, 74.63%, 73.82%, 73.23%, respectively,
and the AUC is 0.741, 0.73, 0.721, 0.71, 0.709, respectively,
which are better than the second best results (i.e., 70.89%,
70.62%, 70.05%, 68.66%, 66.37% in ACC, 0.702, 0.694,
0.671, 0.664, 0.646 in AUC). In the classification task of
missing data between EMCI and LMCI, the classification
accuracy obtained from our ordinal pattern kernel is 76.68%,
76.01%, 75.88%, 75.16%, 74.64%, respectively, and the AUC
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Fig. 4. Classification results in brain connectivity networks with different missing rates (i.e.,missing rate = {5�,15�, 25�,35�,45�}). ACC:
classification accuracy. AUC: area under receiver operating characteristic curve. EMCI: early mild cognitive impairment. LMCI: late mild cognitive
impairment. NC: normal controls.

is 0.732, 0.743, 0.716, 0.732, 0.721, respectively, which are
better than the second best results (i.e., 74.25%, 73.89%,
73.12%, 72.49%, 70.18% in ACC, 0.724, 0.718, 0.703, 0.695,
0.667 in AUC). In the classification task of missing data
between LMCI and NC, the classification accuracy obtained
from our ordinal pattern kernel is 88.36%, 86.04%, 85.41%,
84.58%, 83.38%, respectively, and the AUC is 0.862, 0.847,
0.825, 0.821, 0.804, respectively, which are better than the
second best results (i.e., 82.01%, 81.38%, 80.27%, 80.06%,
78.89% in ACC, 0.793, 0.778, 0.769, 0.742, 0.713 in AUC).
Fig. 4 shows that the classification accuracies and AUCs
obtained by our proposed method are better than the competing
graph kernels in the brain connectivity network with missing
data. These classification results verify the robustness of our
proposed ordinal pattern kernel, and indicate that our proposed
method is good at classifying EMCI and LMCI from NC, and
classifying EMCI from LMCI in brain connectivity networks
with missing data, compared to the state-of-the-art kernels..

E. Discriminative Ordinal Patterns

In this section, we further investigate the discriminative sub-
structure [39] (i.e., DOP) in brain networks of patients and
NC with our proposed ordinal pattern kernel. The matched
function match(DO P(vi ), DO P(v j )) defined in Eq. (5) mea-
sures the similarity between two DOPs, which is also a
ordinal pattern kernel called matched kernel. We apply the
matched kernel to KTST [33], [34], which is a two-sample
test based on kernel function determining whether two samples
are drawn from different distributions, and use this two-sample
test method to identify some discriminative DOPs.

We calculate the DOP for each brain region in brain
connectivity network of each subject with Algorithm 1. Then,
we calculate the matched kernels for these DOPs between
paired brain networks and apply these kernels to KTST to
determine whether EMCI or LMCI patients are significantly
different from NC in these DOPs. If DOPs in EMCI or LMCI
patients are significantly different (i.e., p value is smaller than

TABLE III
DISCRIMINATIVE ORDINAL PATTERNS. L IS LEFT. R IS RIGHT. THE

NODES LISTED IN TABLE ARE THE ABBREVIATIONS OF BRAIN

REGIONS. THE FULL NAME OF BRAIN REGION CAN REFER TO THE

ILLUSTRATION OF AAL ATLAS [38]. EMCI: EARLY MILD COGNITIVE

IMPAIRMENT. LMCI: LATE MILD COGNITIVE IMPAIRMENT. NC: NORMAL

CONTROLS. THE FULL NAMES OF BRAIN REGIONS ARE

SHOWN IN TABLE IV

0.05, when the significant level is 0.05) from those in NC,
these DOPs are regarded as the discriminative DOPs.

We rank these discriminative DOPs according to their p
values and then select the top 4 DOPs with the smallest p
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Fig. 5. Discriminative ordinal patterns. In order to visually show the ordinal pattern paths, we plot the brain regions and edges in different view
directions. EMCI: early mild cognitive impairment. LMCI: late mild cognitive impairment. NC: normal controls. The significant level is 0.05. The full
names of brain regions are shown in Table IV.

value. In order to expediently show the DOPs, we plot the
DOPs of length 6 which have 6 brain regions in average
brain connectivity network of EMCI, LMCI, and NC in Fig. 5
and describe their paths in Table III. The start node of DOP
shown in Fig. 5 and Table III is left hippocampus (HIP), right
HIP, left posterior cingulate gyrus (PCG) and right PCG,
respectively.

From Fig. 5 and Table III, we can find that the DOPs in
brain disease patients are different from those in NC. The first
two brain regions in DOPs are same among EMCI, LMCI,
and NC. In DOP whose start node is right HIP, the first four
brain regions in EMCI are same to those in LMCI, seeing
the second and third figures in the second column in Fig. 5
and Table III. From EMCI to LMCI, the DOP of right HIP
changes slowly compared to the DOP of left HIP. In the DOP
of PCG including left PCG and right PCG, we can find that
the first three brain regions (i.e., PCG.L, PCG.R, PCUN.R in
the DOPs of left PCG and PCG.R, PCG.L, PCUN.L in the
DOP of right PCG) are same in NC and EMCI, seeing the
third and fourth column in Fig. 5 and Table III. In the DOP of
left PCG, the first three brain regions are same among EMCI,
LMCI, and NC, as shown in the third column in Fig. 5 and
Table III. These results indicate that our proposed method can
be used to identify the discriminative ordinal pattern structures
which are challenges for the existing methods in brain network
analysis.

F. Important Brain Regions

When investigating the discriminative ordinal patterns,
we find that some brain regions frequently appear in many
depth-first-based ordinal patterns. For example, when the start
node is left hippocampus, right hippocampus occurs in the
depth-first-based ordinal patterns of NC, EMCI, and LMCI,

Fig. 6. The important ROIs (i.e., brain regions) selected by the proposed
ordinal pattern kernel. The color represents the frequency of occurrence
of the important brain regions (i.e., 10 ROIs) in the depth-first-based
ordinal patterns of all brain regions.

as shown in Table III. This result indicates that the right
hippocampus may play an important role in the depth-first
based ordinal pattern of the left hippocampus. Here, we rank
these ROIs (i.e., brain regions) according to their frequency of
occurrence in the depth-first-based ordinal patterns of all brain
regions and then select the top 10 ROIs using the highest
frequency. The calculation steps include: (1) Find out all
discriminative ordinal patterns; (2) Calculate the occurrence
frequency of each ROI in the discriminative ordinal patterns;
(3) Rank all brain regions according to their frequency of
occurrence; (4) Select the top 10 ROIs.

The selected ROIs include left thalamus(THA.L), right
thalamus (THA.R), right precuneus (PCUN.R), left
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TABLE IV
FULL NAME AND ABBREVIATION OF BRAIN REGIONS

hippocampus (HIP.L), right fusiform gyrus (FFG.R), left
parahippocampal gyrus (PHG.L), left superior temporal gyrus
(STG.L), left posterior cingulate gyrus (PCG.L), right anterior
cingulate-paracingulate gyri (ACG.R), and left amygdala
(AMYG.L), as shown in Fig. 6. These ROIs are consistent
with those revealed in the previous researches related to MCI.

IV. DISCUSSION

A. Significance of Results

Brain network has been widely applied to brain disease
analysis. In brain network analysis, how to measure network
similarity is a challenging task. In various methods, graph
kernels provide an effective framework for addressing this
problem. However, most of the existing graph kernels are
based on unweighted graph and neglect the valuable weighted
information of the edges in brain connectivity network. In this
paper, we have built a graph kernel based on the weighted
information of network and applied it to the classification tasks
of brain diseases. The experimental results indicate that, com-
pared with the competing methods, our proposed graph kernel
can significantly improve the classification performances in
MCI classification tasks.

In addition, some important ROIs frequently appear in
ordinal patterns, when we investigate the discriminative ordi-

nal patterns. These ROIs include thalamus, precuneus, hip-
pocampus, fusiform gyrus, parahippocampal gyrus, superior
temporal gyrus, posterior cingulate gyrus, anterior cingulate-
paracingulate gyri, and amygdala, which have been reported
in the previous studies related to MCI and AD. For example,
in the left hippocampus and left thalamus, NC have significant
differences in shape compared with AD. NC are significantly
different from MCI in the left and right thalamus in shape [40].
According to the evidence of cortical beta-amyloid, precuneus
can be regarded as a witness for excessive beta-amyloid
gathering in AD and MCI pathology [41].

The related researches indicate that the connectivity
strengths (i.e., edge weights) between identified brain regions
in the MCI group are significantly different from those in
the NC group. For example, Yao et al. [42] have found that
AD and MCI subjects had an alteration in the functional
connectivity of the amygdala compared with NC subjects.
Bokde et al. [43] found that functional connectivities of the
fusiform gyrus were different from those of NC.

These changes in the connectivity strengths suggest that
some weighted information of edge in brain connectivity
networks may be disrupted by brain disease. These disrupted
weighted information may lead to the changed ordinal patterns
between brain regions. Our experimental results show that
the proposed ordinal pattern kernel can effectively classify
EMCI and LMCI from NC, and can also classify EMCI from
LMCI, by making full use of the weighted information of edge
and the ordinal pattern relationships of edge weights in brain
connectivity networks, which also provide empirical evidence
for disorder network connectivity patterns in EMCI and LMCI.

B. Influence of Different Thresholds

The brain functional connectivity networks used in our
experiment are constructed from fMRI data by calculating
Pearson correlations between mean time series of pairs of
ROIs. In the experiment, we directly apply the dense functional
connectivity networks to the proposed ordinal pattern kernel
and do not threshold them. The dense brain connectivity net-
works usually involve some unnecessary information. Hence,
we need to threshold the connectivity networks. Different
thresholds will form different network structures. The related
research demonstrated that the networks with average connec-
tion density interval of [25%,75%] can obtain higher classi-
fication performance [44]. The average connectivity density
of each threshold in the set T = {0.3, 0.35, 0.4, 0.45, 0.5}
is in the interval [30%,70%] [31]. Hence, we choose five
different threshold values (i.e., T = {0.3, 0.35, 0.4, 0.45, 0.5})
to construct brain connectivity networks.

To verify the robustness of the proposed graph kernel
on different network structures from the different thresholds,
we examine the classification performance of the proposed
ordinal pattern kernel in these network structures. We cal-
culate the ordinal pattern kernels and the competing graph
kernels on the brain connectivity networks built with different
threshold values and use SVM technique for classification. The
classification results are shown in Fig. 7. From Fig. 7, we can
find that our proposed ordinal pattern kernel outperforms
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Fig. 7. Classification results in brain connectivity networks with different thresholds (i.e.,T = {0.3,0.35,0.4, 0.45, 0.5}). ACC: classification accuracy.
AUC: area under receiver operating characteristic curve. EMCI: early mild cognitive impairment. LMCI: late mild cognitive impairment. NC: normal
controls.

the state-of-the-art kernels in brain connectivity networks of
different thresholds. For instance, our method yields accuracies
of 75.27%, 74.19%, 75.27%, 76.34%, 76.34% in T = {0.3,
0.35, 0.4, 0.45, 0.5} in EMCI vs. NC classification, which
are better than the second best results (i.e., 71.89%, 72.62%,
71.05%, 73.66%, 74.04%). We also perform the supplementary
classification experiments in the brain networks with higher
threshold (i.e., T = {0.55, 0.6, 0.65, 0.7, 0.75}), the clas-
sification results are shown in Fig. S1 in the Supplementary
Materials. From Fig. S1, we can find that the proposed method
still outperforms the competing methods.

C. Comparison With Other Methods

In this section, we discuss the superiority of the pro-
posed method when compared to the other methods includ-
ing convolutional neural network (CNN), random forest, and
ordinal pattern descriptor. In the studies related to CNN,
Yang et al. [45], [46] diagnosed MCI by combining fNIRS
with CNN. They applied oxygenated hemoglobin change
maps, temporal feature maps, and image biomarkers to CNN
and trained the CNN model. Khatun et al. [47] used a single-
channel EEG-based approach to detect MCI. They extracted
590 features from the event-related potential of the collected
EEG signals and ranked these features by using random
forest. Then, the top 25 features were applied to classifica-
tion models. In MCI diagnosis tasks, Yang et al. [45], [46]
and Khatun et al. [47] used novel non-invasive neuroimaging
techniques and a neural network model to investigate MCI,
and obtained higher classification results. These studies offered
new approaches for MCI diagnosis. However, these methods
ignored the spatial structure information of brain regions.
Different from these methods, our proposed ordinal pattern
kernel is built on the brain network and can make full use
of the structure information of ordinal patterns between brain
regions.

In the previous work [19], ordinal pattern as a new
descriptor for brain connectivity network was proposed. Then,
frequency ratio was used to calculate the frequent ordinal
patterns, which frequently appeared in a set of brain connec-
tivity networks. On the frequent ordinal patterns, discrimina-

tive ordinal pattern selection and feature selection were per-
formed. At last, the discriminate ordinal pattern based learning
framework was constructed for brain disease classification.
In this framework, the frequent ordinal pattern mining and
discriminative ordinal pattern selection are two key steps for
discriminative ordinal patterns. According to [19], in given
M subjects, the computational complexity of frequent ordinal
pattern mining is O(M × ne!

(ne−level)! ), ne is the edges in brain
connectivity and level is the max depth of depth-first search
tree. In discriminative ordinal pattern selection, ratio score is
calculated for each frequent ordinal pattern and these ordinal
patterns are ranked in descending order. Here, we hypoth-
esize that there are L frequent ordinal patterns. Hence, the
computational complexity of the discriminate ordinal pattern
based learning framework is O(L × M × ne!

(ne−level)! ). In [19]
and our work, the used connectivity network is nearly full-
connected. Hence, ne ≈ N(N−1

) 2, N is the node number
in the brain network. The computational complexity of the
method in [19] is O(L×M × (N2)!

(N2−level)! ). The computational

complexity of our method is O(N2), O(N2) < O(L × M ×
(N2)!

(N2−level)! ), indicating that our proposed ordinal pattern kernel
is better than the method in [19] in computational complexity.
Meantime, in three tasks of EMCI vs. NC classification, EMCI
vs. LMCI classification, and LCMI vs. NC classification,
the classification accuracy obtained by the method in [19]
is respectively 69.86%, 72.34%, and 81.35%, which are not
better than our proposed ordinal pattern kernel.

V. CONCLUSION

Measuring the network similarity is a challenging task in
brain network analysis. In this paper, we propose an ordinal
pattern kernel to measure the similarity between paired brain
networks. Different from the existing graph kernels built on
unweighted graph, our proposed graph kernel can measure net-
work similarity by making full use of the weighted information
of edge and can also capture ordinal pattern relationship of
edge weights in brain connectivity network. We have further
constructed a learning framework based on the propossed
ordinal pattern kernel for MCI classification using resting state
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fMRI data, with the classification results demonstrating the
effectiveness of the proposed kernel.
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